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We studied graph conflict-free coloring under the distributed LOCAL
model.

A vertex coloring of a graph G = (V, E) maps a color to each vertex of
V. It is called conflict-free if for each vertex v € V there exists a color
associated with a unique vertex in v’s closed neighborhood, following the
definition used by Abel, Alvarez et al. in [1].

The LOCAL model is a distributed computing model where each node
of the graph has a unique ID, infinite computing power, and can commu-
nicate any-size messages to its neighbors during communication rounds.
The complexity of an algorithm is measured by the number of rounds
needed for its execution; this reflects the distance of the furthest infor-
mation a node has to know to achieve its task.

Using a bound from [3], we show that any graph of maximal degree A is
conflict-free O(log® A)-colorable and A-colorable.

We provide a distributed algorithm solving conflict-free O(lognlog? A)
coloring in O(log? n) rounds based on network decomposition [5]. More-
over, we provide initial work aiming to provide an algorithm based on
fractional assignment rounding [4] [6].

In section 4, we show that conflict-free coloring a graph with strictly
less than A colors is not greedily completable, ie, some partial coloring
cannot be extended without any modification of the partial output. We
show that it is sometimes necessary to modify the output of nodes at
distance 2(logn) to extend the coloring to a new node. Formally, we
prove this problem to be £2(log n)-mendable, which helps understand the
complexity of the problem and the barriers encountered while building
the algorithms.
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1 Introduction

1.1 The LOCAL MODEL

Distributed computing Distributed computing refers to a computing model
where there is not one but a network of computers, and each of those can execute
programs in parallel and send messages to each other. In general, when consider-
ing graph theory problems, we consider that the communication network is the
given graph and that each vertex represents a computer. At the beginning, we
assume that each node only knows a limited quantity of information depending
on the model.

The LOCAL model The LOCAL Model of distributed computing is a model
where each node knows its unique ID (an integer), has unlimited computing
power, unlimited storage space, and can send messages of any size to its neigh-
bors. The communication happens in synchronous rounds, ie, messages are sent
and received at the same time across the network. The complexity of an algo-
rithm is defined here as the maximum number of communication rounds needed
to complete the algorithm.

This model is motivated by the fact that it helps understand how much in-
formation a node needs to choose its final state. Indeed, during a communication
round, the messages travel through only one edge. Thus, during the execution
of an algorithm, a node cannot know information about another node at a dis-
tance more than the number of rounds used by the algorithm. So, one can see
the LOCAL complexity as the radius of the neighborhood that influences the
output of a node.

1.2 Locally checkable labeling

A locally checkable labeling [7] is a labeling of the vertices that can be checked
by only looking at the labels of nodes within a constant radius around the node.
Formally, a locally checkable labeling of a graph of maximal degree A can be
defined as a finite set of labels and a finite set of labeled balls ("good balls") of
constant radius and degree at most A.

Classical LCL One of the most studied LCLs is finding a (A + 1)-coloring.
It denotes the following problem: find a vertex labeling (using at most A + 1
distinct labels (colors)) such that no edge is monochromatic (ie, both endpoints
have the same label). This problem is locally checkable; indeed, to verify the
validity of a coloring, one only needs to check, for each node, the labeling of
nodes at a distance of at most one from the said node.

Another classical LCL is finding a Maximal Independent Set. The goal is to
find a labeling (with labels being 1 or 0) of the node such that no neighbors are
both labeled with 1, and there are no 0-labeled nodes that can change their color
to 1. This problem is also locally checkable; indeed, to verify the validity of an
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MIS, one only needs to check, for each node, the labeling of nodes at a distance
of at most one from the said node.

The state-of-the-art algorithms for A + 1-coloring and MIS [5] solve these
problems in O(log®®n) ® rounds in the LOCAL model and are based on a com-
bination of different ingredients, including network decomposition and fractional
assignment rounding.

1.3 Network decomposition

Network decomposition refers to the idea of splitting the network into small
clusters to help the execution by solving the problem on those parts before
turning those partial solutions into a global solution.

Definition 1 ((c,d)-decomposition). A (c,d)-decomposition of the network
is a partitioning of the vertices in ¢ partitions Vi, ...V, such that Vi € [1,c] any
connected component in V; has diameter d in G (ie for each two node u,v € V;
connected in G[V;], there is dg(u,v) < d).

Theorem 1 (Algorithm for network decomposition th. 1.1 in [5]).

There is a deterministic distributed algorithm that in any n-node graph G =
(V, E) computes a (c € O(logn),d € O(logn))-decomposition in O(log® n) rounds
of the LOCAL model.

Once a (c,d)-decomposition is computed. Each partition will execute the
following steps: each node gathers the topology of its cluster and executes a
centralized algorithm to solve the problem on said cluster. Once done, each node
has to compute its final output based on the centralized algorithm’s output and
on the previously computed outputs from neighboring nodes.

1.4 Fractional assignment rounding

The rounding method for labeling problems [4][6] is a method inspired by basic
randomized algorithms for labeling problems. Indeed, those algorithms would
pick a label randomly among the available ones and then terminate if the labeling
is valid or try again.

Instead of picking a label at random, the rounding method "modifies the
probability distribution" over the labels until one of the labels has probability one
(and the other labels have probability 0). To do so, it will begin with a fractional
assignment, which can be seen as a probability distribution over the labels, and at
each round, it will increase or decrease some of the "probabilities" in a way that
does not increase the value of a weight function over the graph. For instance, in
the traditional graph coloring problem, such weight function can be seen as the
expected number of monochromatic edges if the nodes pick their colors according
their probability distribution, this value being kept unchanged, at the end we

b f € O(g) — 367‘14"777J07vn > 'rL0,0 < f(n) <c- g(n) : logk(n)
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have a color assignment with the expected number of monochromatic edges (and
thus the expected number of valid edges).

From this color assignment, one can keep a part of those valid edges and
repeat the procedure on the rest of the graph. If the removed part of the graph
is of size a constant fraction of the size of the graph, then O(logn) repetitions
are enough to label each node of the graph.

We provide preliminary work to use this method to find conflict-free o(A)-
coloring, but no complete algorithms because, unlike (A + 1)-coloring, this prob-
lem is not greedily completable (see theorem 9).

1.5 Our results

Using a bound from [3], we prove, in section2, that for any graph G of size
n = |V| and maximum degree A, there exists a conflict-free k-coloring where
k € O(log*(A)).

In section 3, we provide a new distributed algorithm for computing a conflict-
free O(logn - log® A)-coloring in O(log® n) rounds in the local model. Then we
provide preliminary work for using fractional assignment rounding.

In section 4, we prove that conflict-free (< A)-coloring® is not greedily com-
pletable, ie VA € N there exists some partial cf k-coloring of a graph of maximum
degree A that cannot be extended.

We also provide some mendability [2] results in section 4. Informally, we
consider a problem to be r-mendable if one can choose the output of a node v
without modifying the output of nodes that are at a distance of more than r
from v. We prove that conflict-free (< A)-coloring is {2(log(n))-mendable.

2 Goals of the internship

This internship aimed to produce efficient algorithm(s) based on the methods
presented above to address the problem of graph conflict-free coloring in the
LOCAL model.

Notations For any K, K* = K\ {0k}, KT =K\ {z € K,z < 0x}. Where O is
the neutral element for the addition in K.

The set of integers ranging from a € N to b € N;b > a is denoted [a, b].

Let a graph G = (V,E), Vv € V,

N() ={v}U{v, {v,v'} € E}

denotes the (closed) neighborhood of v.

Let S C V be a subset of vertices, G[S] denotes the graph induced by S (ie
the graph (S, EN (S x 9)).

For any v € V,r € N, B,(v) is the r-radius ball around V, formally B, (v) =
Gl{u € Vl|dg(v,u) < r}]

Cany ke NNk < A
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Unless otherwise stated, A denotes the maximal degree of the considered
graph, n denotes the number of vertices of the latter.

Conflict-free coloring Conflict-free coloring can be seen as a generalization
of proper coloring to hypergraphs, ie, graphs whose edges are sets of vertices of
any size. If each hyper-edge is of size 2, then the two definitions match.

Definition 2 (Conflict-free k-coloring of hypergraph). Let H = (V,S) be
a hypergraph. x : V. — [1,k] is a cf k-coloring if Vs € S:

Ja € [1,k],3v € s, x(v) =

Graph conflict-free coloring is such that each node v has in its neighborhood
a "conflict-free neighbor". The latter is a colored vertex whose color is not worn
by any other neighbors of v. This follows the definition introduced in [1].

Note that this does not imply that each node is colored.

This is a conflict-free coloring on the hypergraph H = (V’,S) where V' is
the dominating subset of V containing the colored nodes, S = {N(x),Vz € V'}

Definition 3 (Graph conflict-free coloring). Let G = (V, E) be a graph,
X :V = [0,k] is a cf k-coloring if :

Yu € V,3a € [1,k],3v € N(u),x(v) = «

We call v a conflict-free neighbor of u. If there are multiple neighbors of unique
color, then the cf neighbor is chosen arbitrarily.

Note that the cf-neighbor necessarily wears a non-zero color. The "color" zero
1s assigned to non-colored vertices.

Here is a conflict-free 2-coloring of a graph G, the nodes labeled with e are
the non colored (or zero colored) nodes.
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Motivation of the internship Conflict-free coloring is motivated by the fre-
quency assignment problem. Consider a vast factory where each equipment is
controlled using wireless technology. In this factory, some antennas are installed,
and one wants to know how to assign frequencies to those antennas so that each
equipment receives its instructions without interference. Those interferences are
produced when equipment receives two signals from distinct antennas on the
same frequency. Moreover, the size of the spectrum of frequencies is costly, so
the goal is to minimize the number of frequencies used. In such a context, non
colored nodes can be seen as turned-off antennas.

This problem was well studied in the centralized model [1],[8],[3], but no
known specialized distributed algorithms existed until then. Moreover, a com-
plexity wall for A + 1-coloring, MIS etc... was recently broken by the rounding
method developped by Ghaffari, Kuhn et al. [6] and Faour, Ghaffari et al. [4] as
well as the complexity of graph decomposition by Ghaffari and Grunau [5] which
again improved the complexity of MIS and A+ 1-coloring. So, the initial idea of
this internship was to explore whether those efficient methods could be adapted
to our problem. In other words, the goal was to understand how the slight differ-
ence between this problem and usual vertex coloring impacts its "locality" and
whether conflict-free coloring was part of those problems where those standard
methods can be applied easily.

Known centralized algorithms Some centralized algorithms solving conflict-
free O(poly(log A))-coloring were presented in previous works ([8],[3]). In [8], is
presented a centralized algorithm solving conflict-free O(log2+€ n)-coloring.

The output of this algorithm is a variant of conflict-free coloring where each
node is colored (ie, no color 0). This is also a conflict-free coloring, so it solves
the version studied here.

Theorem 2 (Lovasz Local Lemma). Let X be a set of mutually independent
variables. Let By, ..., B, be a set of bad events, each is defined on A; C X. We
consider B; and Bj to be dependent if A; N Aj # 0.

If each bad event is dependent on at most d € N other bad events and the
probability of any bad event happening is bounded by p € [0, 1], then the Lovasz
Local Lemma states that:

e.d.p < 1= there is a valuation of the variables so that no bad event happens.

From the bad events, one can produce a dependency graph where bad events
share an edge if they are dependent.

In the case of conflict-free coloring of a graph G = (V, E). The graph G? =
(V,EU{{i,5},dc(i,7) < 2} is the dependency graph of the bad events: (By)yev
where B, is true when the neighborhood of v is not conflict-free colored. The
set of independent variables is the set of (z,)yecy Where x, refers to the color
assigned to v.

To find the value of (z,),cv, there are some distributed algorithms, and
most of them use random sampling (ie, picking at random a possible value and
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evaluating the bad events). The deterministic algorithms use a heuristic to choose
among them.

The centralized algorithm from Pach and Tardos in [8] uses, at some point,
a deterministic Algorithmic Local Lemma. Even though there exist distributed
deterministic Lovasz Local Lemma algorithms, the choice of the color is made
so that the number of "dangerous (2,3)-trees" over the graph does not increase.
Following such information would require knowing the whole graph and thus is
not suitable in distributed computing when the desired complexity is lower than
the diameter.

In [3], a trickier version of the algorithm from [8] is presented. This algorithm

uses a very similar approach but manages to reduce the number of colors to
O(log® A).

Theorem 3 (Centralized algorithm for conflict-free coloring). There is
a deterministic centralized algorithm that for any graph G = (V, E) computes a
conflict-free k-coloring with k € O(log2 A).

Proof. In the proof of th. 3 of [3], there is a deterministic algorithm for computing
a variant of conflict-free coloring where each node is colored (no color 0).

The output of this algorithm is a conflict-free coloring, then it can be used
as it is presented in [3]

However, this algorithm assigns conflict-free neighbors to each node and then
colors every remaining uncolored node with a new color. This color can be re-
named to 0, and we obtain an output coherent with the definition studied in this
work.

Conflict-free chromatic number This denotes the number of colors needed
to create a conflict-free coloring.

Theorem 4 (Conflict-free Brooks’ Theorem). If G=(V,E) is a connected
graph of degree at most A. Then one needs at most A colors to produce a CF-
coloring of G.

Proof. If G is not complete nor an odd cycle, then the usual Brooks’ theorem
provides a A-coloring which is a CF A-coloring (each vertex is its own CF-
neighbor).

If G is complete, one just needs to color with color 1 one of the nodes and
let every other node uncolored. This is a valid CF-coloring. Indeed, the graph
being complete, each node has the colored node as its conflict-free neighbor.

If G is an odd cycle (let n = |V]):

- If 3K’ such that n = 3 x k’, one can assign color 1 on the second of every
three consecutive vertices. The colored vertex will then become the CF-neighbor
of those three vertices. Such a procedure ensures that each node will only have
one colored vertex in its neighborhood. This is then a valid CF 1-coloring of the
cycle. (see Fig. 1a)

- If 3k’ such that n = 3k’ — 1, one can follow the same procedure as above
on the 3(k’ — 1) first nodes. There remain two nodes that are not colored. One
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Fig. 1: CF-coloring odd cycles

can color the second of them with 2. This will provide a conflict-free neighbor
to those two remaining nodes, and the very first vertex of the cycle will keep its
CF-neighbor of color 1. (see Fig. 1b)

- If 3k’ such that n = 3 k' — 2, one can follow the same procedure as above
to color the 3(k" — 1) first nodes and assign 2 to the remaining node. (see Fig.
1lc)

Theorem 5 (Asymptotic bound on the CF chromatic number ). Let
G be a graph with mazximum degree A. Then it is conflict-free k-colorable with
k € O(log? A).

Proof. In th. 3 from [3], the same bound is obtained on a variation of conflict-free
coloring, where each node is colored (ie, no color 0). Though a solution to this
variant is a solution to the version studied here. Hence, we have that any graph
with maximum degree A is cf k-colorable with k& € O(log® A).

Known distributed algorithms As said earlier, no known distributed algo-
rithms addressed this problem, especially. But one can easily understand that a
traditional graph coloring is a conflict-free coloring. Indeed, in a usual coloring,
each node is its conflict-free neighbor. Thus, a distributed coloring algorithm is
a distributed conflict-free coloring algorithm.

In th. 4.1 from [6], there is a deterministic distributed algorithm that solves
(A + 1)-coloring in O(log* A - logn) rounds.

Unfortunately, A + 1 being the smallest number of colors (depending on A)
that allows for coloring any graph, such a method would use too many colors
compared to the conflict-free chromatic number defined earlier. So, using usual
coloring algorithms does not seem satisfactory.
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3 Distributed algorithms

3.1 Rounding method

Distributed rounding algorithm The following description is greatly in-
spired by section 2.1 from [4].

Let G = (V, E) be a graph, let k be the size of the palette (ie, the maximal
number of labels the algorithm is allowed to use). A fractional label assignment
A:V — [0,1]% is an assignment of a probability distribution over the labels
to each node v € V. For an integer K > 1 a fractional assignment is called
1/K-integral if Va € [0, k], Vv € V, A\ (v) = a/K with a € N.

For each node v € V, we use L(v) (and A(v)) to denote the set of possible
(fractional) assignments to v. This notation extends trivially to vertex sets and
edges.

We define a utility function u : E x £(V) — R and a cost function ¢ :
E x L(V) — RT*. That is, for a given color assignment [ € L£(V), u and ¢
assign non-negative utility and cost values u(e, ) and c(e, ) to every edge e € E.
We slightly overload the notation and also define u and c for a fractional color
assignment A € A(V). In this case, utility and cost of e are defined as the
expected values of u and c if the colors of the two nodes V'(e) of e are chosen
independently at random from the distributions given by the fractional color
assignment.

Finally for a set of edge ' C E, we define u(F,l) = > . pu(e,l) and c(F,l) =
Y ecrclesl).

Theorem 6 (Rounding of fractional assignment, lemma 2.2 in [4]). Let
G = (V,E) be a multi-graph, which is equipped with utility and cost functions
u and ¢ and with an 1/2%-integral fractional assignment X for a given integer
k> 1. Let € € [0,1] and p €]0O,1] be two parameters. If u(X) — c(A) > pu(N).
There 1s an algorithm that returns an integral color assignment [ with

u(l) —c(l) = (1 =€) - (u(A) = c(A))

Once the integral color assignment [ is created, the idea is that some nodes
that have a valid color assignment terminate. To do so efficiently, u and ¢ have
to be chosen wisely.

For instance, when considering usual (A + 1)-coloring, one can choose them
so that uw(A\) — ¢(A\) lower-bounds the expected number of edges that are not
monochromatic. Then, using some independent subset of the nodes that have a
limited monochromatic degree, one can select a constant part of the nodes and
make them terminate. If active nodes are remaining, the algorithm is executed
again on those nodes to extend the coloring.

A useful property to have on the utility and cost function is that it enables the
terminating part of the graph, at each round, to be of size a constant fraction of
the size of the graph. Such a property ensures that O(logn) repeated executions
of the algorithm are enough for the whole graph to be colored.
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An algorithm for conflict-free coloring

Theorem 7. There is an initial assignment X\, a cost function c, and a utility
function u so that at the end of the rounding procedure, a constant fraction of
the neighborhoods are conflict-free O(v/ A)-colored.

Proof. See appendix 6.1

This last theorem is interesting, but it is not sufficient. Indeed, among the
nodes with a conflict-free colored neighborhood, it is not possible for each of
those to terminate. Different barriers exist:

— Some may have their CF-neighbor that does not terminate and then changes
color. To solve this problem, we could consider that those nodes do not
terminate. However, this would imply that the number of terminating nodes
might not be a constant fraction of the graph.

— Even without such a situation, it is possible that some nodes create a labeling
that forbids every available color to a single non-terminated node (see fig. 2).
This makes it impossible for the latter to be colored during the next phase.

— etc

Those barriers are formalized in section 4 by the fact that conflict-free (< A)-
coloring is not greedily completable. In other words, some partial coloring cannot
be extended using the same palette. This makes it difficult to find a way of
choosing the nodes that should terminate while still keeping it a constant fraction
of the graph.

Note that in the above theorem, O(v/A) colors are used, but it seems that it
could also work with O(log® A) colors.

3.2 Network decomposition

With the Network decomposition, we managed to avoid the barriers described
above by using a larger number of colors.

Theorem 8 (Distributed algorithm for CF O(logn - log? A)-coloring).
There is a deterministic distributed algorithm that in any n-node graph G =
(V, E) computes a conflict-free k-coloring with k € O(log® A-logn) in O(log?(n))
rounds of communication in the LOCAL model.

Proof. This algorithm contains two main steps.

First, the algorithm from Theorem 1 is executed. Producing a (¢ € O(logn),d €
(logn))-decomposition of the network.

Then, a series of ¢ stages begin. On stage 4, the nodes from V; will gather the
topology of their connected component and the highest color used by neighboring
nodes from Vi U ... U V;_1. To do so, each node will share with its neighbors
what it knows from its environment until each node learned the topology of
its component. Having that d € O(logn), this gathering procedure will take
O(logn) rounds.
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Once each node knows its component. They will execute the algorithm from
Theorem 3. This algorithm, being deterministic, each node in the component
will then obtain the same conflict-free coloring. To ensure compatibility with
the coloring of other components, each will offset its colors by the value of the
highest previously used color.

At the end of the c stages, each node will be colored, and this coloring will
be valid because for each i € [1,c], G[V;] wears a valid coloring and there are
no conflicts between neighboring partitions because each used a distinct palette.
This latter property implies that it uses O(logn - log? A) colors.

The network decomposition has complexity in O(log® n) rounds, the coloring
part of the algorithm has complexity in O(log®n) rounds, as the ¢ € O(logn)
stages each use O(logn) rounds.

Thus, the complexity of the whole algorithm is in O(log2 n).

4 Mendability results

Here we detail and prove some mendability results. Mendability is defined by
Balliu, Hirvonen et al in [2]. One can see mendability as the size of the patch
needed to fix a hole in a partial solution. In other words, consider that a partial
solution makes it impossible to choose the output for a given node; mendability
measures the radius of the smallest ball around the given node containing the
furthest node one would have to relabel to solve this gridlock. For instance, A+1-
coloring is 0-mendable because there is always an available color to choose, and
4-coloring a grid is 2-mendable (see [2]). We redefine here the formal objects
used to work on mendability for the sake of clarity.

4.1 Locally verifiable Problems

Definition 4. Locally verifiable problems [2]. A locally verifiable problem II is
defined by some input labels X, some output labels I', and a verifier . In IT
we are gwen a graph G = (V, E) and an input labeling o : V. — X. The task
is to find a solution X\ :' V. — I' that makes the verifier "happy" on each node.
In general v maps (G, \,v) to "happy" or "unhappy" and we consider that 1
accepts A on G = (V| E) if for each v € V, (G, \,v) = happy.

Moreover, this verifier has to be "local”, ie, there must exist r € N so that
Y(G; A\, v) only depends on B,.(v), ie, the r-radius neighborhood of v in G.

Conflict-free k-coloring is locally verifiable. Indeed, it is defined by X', the set of
IDs, I' = [0, k] and % the verifier, outputs "happy" for (G, \, v) if A provides a
conflict-free neighbor to v. ¢ is local because it only needs to know A(N(v)).

4.2 Greedy completability and local mendability

Definition 5 (Partial solutions of conflict-free coloring [2]). Let’s intro-
duce a new label L to denote non-terminated nodes, ie, nodes which have not
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Fig.2: Gy a

chosen their output yet. Let I" = I'U{L}, with I" being the palette one wants
to conflict-free color the graph with. Let )’ be a verifier such that:

happy, — if L € A(N(v))
W (G, N\, v) = { happy, if L& A(N(v))A3Ju a conflict-free neighbor of v

unhappy, otherwise

Then one can define partial solutions of conflict-free k-coloring as solutions of

the locally verifiable problem II defined by X, I ).

Definition 6 (Greedily completable problems [2]). These are problems
such that any partial solution of said problem can be extended without any mod-
ification of the partial output. (Formally, they are 0-mendable problems, see def-
inition 7)

Theorem 9 ((< A)-coloring is not greedily completable.). VA € N, Vk <
A there exists a graph Gi.a = (Vi A, Er A) with mazimum degree A and a partial
CF k-coloring N}, o of Gk,a that cannot be extended ie, it is impossible to color
every nodes with the palette.

Proof. Let’s consider the following colored graph (see Fig.2). On the left side,
each vertex has a color from [1,k],k < A, and they are connected to nodes
marked with e, meaning that they are not colored. Those uncolored nodes are
connected to the only still alive node on the right side (labeled with L).

One can see that the maximal degree, being k, is indeed lower than A. Note
that the node on the right has no cf-neighbor; thus, it must choose a color from
[1,k].

Let’s consider that it chooses color i € [1,k]. Then the coloring becomes
illegal. Indeed, there is a node on the left side with color 7 that is connected to
an uncolored node. The latter now has two neighbors with color i and thus no
conflict-free neighbor. This is not a valid conflict-free coloring.

This property being true for any i € [1, k], there is no legal choice to color
this node.

Definition 7 (T-mend [2]). Let A : V — I be a partial solution such that 1’
accepts it, where 1) is the relaxation of a verifier on partial solutions. p: V — I
is a T-mend of X at node v if:
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" accepts it

(0) £ L
(u) = L implies A(u) = L
(u) # XMu) implies u is within distance T of v.

Definition 8 (T-mendable problems [2]). Let T : N — N be a function.
A werifier ' is T-mendable if for all n-node graph and all partial colorings A
accepted by ', there exists a T'(n)-mend of X\ at v for any v € V.

A problem II is T-mendable if there exists a T-mendable local verifier for the
problem II. The mending radius of a problem II is T if II is T-mendable but
not T'-mendable for any T' # T such that T'(n) < T(n).

N
K
- h
S H

Theorem 10. CF (< A)-coloring has £2(logn) mending radius. In other words,
VA > 2,Vk < A, Vi € N there exists Gr; = Vi, Ex,i, Ae1) @ partially colored
graph of mazximal degree at most A such that mending any 1 -nodes requires to
modify nodes at distance i from those nodes and |Vy ;| € O(k?)

7

(a) Hq (b) Gy

4 L

Fig. 3: Forbidding colored graphs

Proof. The colored graph in Fig. 3a forbids the l-node to choose the color 1.
Further, H; will denote the same graph as H; but with the leftmost node colored
with i, thus forbidding the 1-node to wear the color 1.

Let A € N,k < A. Let’s first build Gj,; and Gy, 2 before recursively building
(Gk.i)ien-

One can then build Gg,1 (see Fig. 3b), by plugging every H;,Vi € [1,k]
around the same L-node. This is a graph of maximal degree & < A partially
colored in a way that it is impossible to color directly the 1-node, because every
color is forbidden and the color 0 is not suitable. But if a node at distance 1
from the |-node is colored, then a valid CF k-coloring can be produced. Note
that V1] =2xk+ 1€ O(k).

To produce Gy, 2, the idea is to forbid each node at distance 1 from the L-
node to change its color, to do so, we will use G,1. Note that if a node v has a
cf-neighbor with color «,,, then it is unnecessary to forbid v to wear «, as this
would either be non-valid if v is its cf-neighbor or useless as each node in Gy ;
only has a unique cf-neighbor, wearing its color would then make the cf-coloring
non-valid.
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Fig. 4: Building G}, 2

So, for each v € V;; at distance 1 from the _L-node, let o, be the color of
their cf-neighbor. Gy 2 will then be a copy of Gj,1 where each node v € V; ;, at
distance 1 from the L-node is connected to a copy of Gy 1 \ Hq, (see Fig. 4).

Then, we obtain Gj 2 a colored graph of maximal degree k +1 < A. As
we already know from the analysis of Gj 1, the L-node can’t choose a color.
Moreover, every node at distance 1 from the latter can’t change its color as they
are forbidden to do so by its neighbors. Though the graph of Gy, 2 is a tree, so it
is 1-colorable (color each node of depth 3k, k € N), hence it is colorable. So, to
reach a valid coloring, one would need to modify the partial coloring, and this
is only possible for nodes at distance of at least 2 from the 1l-node. Note that
|Vk,2| = |Vk’1| + kx 2 (/f — 1) € O(k2)

Then, G}, ;41 is made by connecting each node v at distance i from the L-node
in G; with a copy of Gi,1 \ Ha, .

The colored graph obtained has maximal degree of k +1 < A (the only
change to Gi; is that k — 1 edges were added to vertices of degree 2) and
|Vk,i+1| = |Vk71| + 2% kb x (k — 1) € O(kiJrl)

Therefore, for any i € N, mending the 1-node would require changing the
color of nodes at a distance of at least i. Given that |V} ;| € O(k?), we have that
i € 2(log |V; kl)-

Thus, CF (< A)-coloring is £2(logn)-mendable with n being the size of the
graph.
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These last results formally explain the difficulties encountered when building
the algorithms. Indeed, those methods work well on 0-mendable problems like
MIS or A + 1-coloring. But CF-coloring being not greedily completable (in fact
£2(log n)-mendable), a partial solution cannot always be extended.

5 Conclusion

Wrap-up This work shows how conflict-free o(A)-coloring stands out among
LCLs by its complexity while being a very natural and straightforward problem.
Indeed, we showed how it is not greedily completable (Theorem 9) while other
LCLs are (it even has £2(logn)-mending radius (see Theorem 10)). This makes
it harder to build efficient algorithms to solve it. Still, we managed to provide an
algorithm based on Network Decomposition (Theorem 8) and the use of multiple
palettes, and produced preliminary works (see subsection 3.1) to build another
algorithm based on the rounding method, which could hopefully use a smaller
palette.

Open questions This work led to the following questions and ideas for future
work on this topic :

1. Can the 2(logn) mending radius be used to reduce the number of colors
used by the Network decomposition method?

2. Is it possible, by any means, to reduce the number of colors used by the
algorithm using network decomposition?

3. Is it possible to select a constant share of the colored node when using the
rounding method?

4. If not, is it possible to use a similar idea of "multiple palettes" for each
rounding phase? Constraining the set of colored nodes to an independent set
seems interesting.

5. Is it possible to provide a distributed version of the algorithm of Theorem
3, or using more local heuristics, thus turning the algorithm from [8] into a
distributed one?
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6 Appendices

6.1 Proof of theorem 3.1

Proof (of theorem 3.1). Let us consider Vi € V,d;, the degree of node i. Let
pi = 5> ki = 2% [Vdi], let k* = 2[V/A] 4+ 1. Now, let

AV = [0,1]%
. bi Pi
1—pi,—, ..., —,0,...,0).
? H ( pl7 kl7 ) k27 ) ) )
be the initial assignment.
Let the utility function be
u: Ex L(V) = R"
. 1 1
(4,7),1 — @ Z L[n;e =1] + 4 Z 1[nj,a =1]
acll,k] a€l,k;]

Its version on fractional assignments is then

u: Ex A(V) = Rt

. 1 1
(17])7)‘}_)d7i Z P)\[nl,azl]+@ z P)\[n_],azl]
a€e(1,ki] a€1,k;]
Where n; , = k is the event that i has exactly k neighbors of color « in its
neighborhood. The probability P, is defined on the fractional assignment A seen

as a probability distribution.
Let the cost function be

c: Ex L(V)—RT

| kol ks
(i), 1 = =D > Mna=10n5=1]
v a=1 B=a+1
LRl K
+o 1[nja =1Nn;z =1]
7 a=1 B=a+1
with the following fractional version
c: Ex A(V) =Rt
| ksl ks
) ) 5 1.Q = Z =
(4,7), A — p Py[n;, 1Nn; g =1]
@ a=1 B=a+1
LTl B
+- Pl =10n;z = 1]
d;

1

Q
Il
-

B

+

[e3%
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Note that, according to the inclusion-exclusion principle, we have:

ki kj

1 .. .

*P)\ U zazl +d7P)\ Unj,a:]- 2”(27])_C(Za.7)
a=1 J a=1

Let A be the number of neighborhoods wearing a valid conflict-free coloring. We
have, following the fractional assignment as a probability distribution:

=2_h

i€V

U Mo = 1] > u(A) —c(N) = Z u(e, A) — c(e, A)

ecE
Property 1. Y qepr g Palnia = U=32000 S5 0y Palnia = 1nnis = 1] > 5
Proof. see Appendix 6.2

Also, we have the following.

ki—1 ks
Z u(e)—c(e) = Z Z Pi[njo=1]— Z Z Pi[nio=1Nn; 5 =1]
eEl i€V \a€ell,k] a=1 f=a+l
Using property 1, we obtain the following:
N —e() >
U c 25n

Moreover u(X) = Y icy S| Pln o = 1].
Property 2. 25;1 Pn,o=1<1
Proof. see Appendix 6.2

Using property 1, we obtain «(A) < n. So we have :

4
A) —c(A) = —=u(A
u(d) = e) = puld)

To use Theorem 6, the initial assignment must be %—integral for some con-
stant K. To do so, we can use Lemma 2.3 from [4] with \,,;, being the smallest
non-zero probability among A(V). Each node will then produce a new initial
assignment )\ with the following properties:

— )\ is 1/2¥ integral with 2% € O( /Mmm)
—uN)—cN)> (1 —¢€) - (u(N) —c(X)), with € € [0, 1]
= u(N) = c(N) > Bu(N)
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Using theorem 6 with e = 1/2, 1 = 5= and X’ the nodes obtain an integral
assignment 1 with

1

A)—c¢(N) > —=
(u(N) — () 2 5o

But also have that Ej[A] > u(l) — ¢(I) if we see the integral assignment as a
trivial probability distribution.

So we obtain that Ej[A] > s-n. Hence, we obtain that at least one 25th of
the neighborhoods are conflict-free colored.

u(l) = e(l) = 5 - (u(X) = ¢(X)) =

N

6.2 Proof of property 1 and 2

Proof (of property 1). First, let’s use the multinomial probability law to reach
some useful form of the equation.

> Pilnia=1] =3 > Plnia=1Nni5=1]
a€ll,ki] a=1 B=a+1
_ g (Gt N\p (P & Cki(ki 1) [ di+1 P\ 1 2 it
S\ 1, d )k k; 2 1,1,di —1) \ k; k;
d; di—1
Pi ’ dl(dz + ].) 2 kl —1 2}%‘ *
=(d;+1)p; [1—-= — : 1—
(di +1)p ( ) 5 P a

pi\"  dipi
> (d: 4+ 1), 1 _
> (di + )m(( k) 5 )

di—1
This inequality stands because % (1 — %) < 1. Then, note the following

di di
<1 - m) = (1 R > R )

ki 10d; [V/d;]

Given that d; > 1

(i Yoot Yo (1- 1) —ue

d;
Then (1- )" > 0..
So, we obtain the following bound :

Y Pnia=1-Y > Pnia=10nig=1]
a€[l,k;] a=1 f=a+l
di +1 di+1 (4
> 09-0.1) = -

— 25
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Proof (of property 2). From 6.2 we have that :

d; d;
= (d ) (1-B) = dEL e
> Pla =t =@ op (1-8) =t (18

a€l,k;:]

d;
Given that (1 — %) < 1. We obtain the following bound :

> Pnia=1<1

a€ell,k;]
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